New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: Evolution of lesion volume and correlation with clinical outcome
Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: Evolution of lesion volume and correlation with clinical outcome ANNALS OF NEUROLOGY Beaulieu, C., de Crespigny, A., Tong, D. C., Moseley, M. E., Albers, G. W., Marks, M. P. 1999; 46 (4): 568-578Abstract
A prospective longitudinal diffusion-weighted and perfusion-weighted magnetic resonance imaging (DWI/PWI) study of stroke patients (n = 21) at five distinct time points was performed to evaluate lesion evolution and to assess whether DWI and PWI can accurately and objectively demonstrate the degree of ischemia-induced deficits within hours after stroke onset. Patients were scanned first within 7 hours of symptom onset and then subsequently at 3 to 6 hours, 24 to 36 hours, 5 to 7 days, and 30 days after the initial scan. Lesion evolution was dynamic during the first month after stroke. Most patients (18 of 19, 95%) showed increased lesion volume over the first week and then decreased at 1 month relative to 1 week (12 of 14, 86%). Overall, lesion growth appeared to depend on the degree of mismatch between diffusion and perfusion at the initial scan. Abnormal volumes on the acute DWI and PWI (<7 hours) correlated well with initial National Institutes of Health (NIH) stroke scale scores, outcome NIH stroke scale scores, and final lesion volume. DWI and PWI can provide an early measure of metabolic and hemodynamic insufficiency, and thus can improve our understanding of the evolution and outcome after acute ischemic stroke.
View details for Web of Science ID 000082914500004
View details for PubMedID 10514093