Spatial relationship of sites for atrial fibrillation drivers and atrial tachycardia in patients with both arrhythmias. International journal of cardiology Baykaner, T. n., Zaman, J. A., Rogers, A. J., Navara, R. n., AlHusseini, M. n., Borne, R. T., Park, S. n., Wang, P. J., Krummen, D. E., Sauer, W. H., Narayan, S. M. 2017; 248: 188–95

Abstract

Atrial fibrillation (AF) often converts to and from atrial tachycardia (AT), but it is undefined if these rhythms are mechanistically related in such patients. We tested the hypothesis that critical sites for AT may be related to regional AF sources in patients with both rhythms, by mapping their locations and response to ablation on transitions to and from AF.From 219 patients undergoing spatial mapping of AF prior to ablation at 3 centers, we enrolled 26 patients in whom AF converted to AT by ablation (n=19) or spontaneously (n=7; left atrial size 42±6cm, 38% persistent AF). Both atria were mapped in both rhythms by 64-electrode baskets, traditional activation maps and entrainment.Each patient had a single mapped AT (17 reentrant, 9 focal) and 3.7±1.7 AF sources. The mapped AT spatially overlapped one AF source in 88% (23/26) of patients, in left (15/23) or right (8/23) atria. AF transitioned to AT by 3 mechanisms: (a) ablation anchoring AF rotor to AT (n=13); (b) residual, unablated AF source producing AT (n=6); (c) spontaneous slowing of AF rotor leaving reentrant AT at this site without any ablation (n=7). Electrogram analysis revealed a lower peak-to-peak voltage at overlapping sites (0.36±0.2mV vs 0.49±0.2mV p=0.03).Mechanisms responsible for AT and AF may arise in overlapping atrial regions. This mechanistic inter-relationship may reflect structural and/or functional properties in either atrium. Future work should delineate how acceleration of an organized AT may produce AF, and whether such regions can be targeted a priori to prevent AT recurrence post AF ablation.

View details for PubMedID 28733070