Skip to main content
miR-25 Tough Decoy Enhances Cardiac Function in Heart Failure. Molecular therapy : the journal of the American Society of Gene Therapy Jeong, D. n., Yoo, J. n., Lee, P. n., Kepreotis, S. V., Lee, A. n., Wahlquist, C. n., Brown, B. D., Kho, C. n., Mercola, M. n., Hajjar, R. J. 2017


MicroRNAs are promising therapeutic targets, because their inhibition has the potential to normalize gene expression in diseased states. Recently, our group found that miR-25 is a key SERCA2a regulating microRNA, and we showed that multiple injections of antagomirs against miR-25 enhance cardiac contractility and function through SERCA2a restoration in a murine heart failure model. However, for clinical application, a more stable suppressor of miR-25 would be desirable. Tough Decoy (TuD) inhibitors are emerging as a highly effective method for microRNA inhibition due to their resistance to endonucleolytic degradation, high miRNA binding affinity, and efficient delivery. We generated a miR-25 TuD inhibitor and subcloned it into a cardiotropic AAV9 vector to evaluate its efficacy. The AAV9 TuD showed selective inhibition of miR-25 in vitro cardiomyoblast culture. In vivo, AAV9-miR-25 TuD delivered to the murine pressure-overload heart failure model selectively decreased expression of miR-25, increased levels of SERCA2a protein, and ameliorated cardiac dysfunction and fibrosis. Our data indicate that miR-25 TuD is an effective long-term suppressor of miR-25 and a promising therapeutic candidate to treat heart failure.

View details for PubMedID 29273502