Global Chronic Total Occlusion CrossingAlgorithm: JACC State-of-the-Art Review. Journal of the American College of Cardiology Wu, E. B., Brilakis, E. S., Mashayekhi, K., Tsuchikane, E., Alaswad, K., Araya, M., Avran, A., Azzalini, L., Babunashvili, A. M., Bayani, B., Behnes, M., Bhindi, R., Boudou, N., Boukhris, M., Bozinovic, N. Z., Bryniarski, L., Bufe, A., Buller, C. E., Burke, M. N., Buttner, A., Cardoso, P., Carlino, M., Chen, J., Christiansen, E. H., Colombo, A., Croce, K., de Los Santos, F. D., de Martini, T., Dens, J., di Mario, C., Dou, K., Egred, M., Elbarouni, B., ElGuindy, A. M., Escaned, J., Furkalo, S., Gagnor, A., Galassi, A. R., Garbo, R., Gasparini, G., Ge, J., Ge, L., Goel, P. K., Goktekin, O., Gonzalo, N., Grancini, L., Hall, A., Hanna Quesada, F. L., Hanratty, C., Harb, S., Harding, S. A., Hatem, R., Henriques, J. P., Hildick-Smith, D., Hill, J. M., Hoye, A., Jaber, W., Jaffer, F. A., Jang, Y., Jussila, R., Kalnins, A., Kalyanasundaram, A., Kandzari, D. E., Kao, H., Karmpaliotis, D., Kassem, H. H., Khatri, J., Knaapen, P., Kornowski, R., Krestyaninov, O., Kumar, A. V., Lamelas, P. M., Lee, S., Lefevre, T., Leung, R., Li, Y., Li, Y., Lim, S., Lo, S., Lombardi, W., Maran, A., McEntegart, M., Moses, J., Munawar, M., Navarro, A., Ngo, H. M., Nicholson, W., Oksnes, A., Olivecrona, G. K., Padilla, L., Patel, M., Pershad, A., Postu, M., Qian, J., Quadros, A., Rafeh, N. A., Ramunddal, T., Prakasa Rao, V. S., Reifart, N., Riley, R. F., Rinfret, S., Saghatelyan, M., Sianos, G., Smith, E., Spaedy, A., Spratt, J., Stone, G., Strange, J. W., Tammam, K. O., Thompson, C. A., Toma, A., Tremmel, J. A., Trinidad, R. S., Ungi, I., Vo, M., Vu, V. H., Walsh, S., Werner, G., Wojcik, J., Wollmuth, J., Xu, B., Yamane, M., Ybarra, L. F., Yeh, R. W., Zhang, Q. 2021; 78 (8): 840-853

Abstract

The authors developed a global chronic total occlusion crossing algorithm following 10 steps: 1) dual angiography; 2) careful angiographic review focusing on proximal cap morphology, occlusion segment, distal vessel quality, and collateral circulation; 3) approaching proximal cap ambiguity using intravascular ultrasound, retrograde, and move-the-cap techniques; 4) approaching poor distal vessel quality using the retrograde approach and bifurcation at the distal cap by use of a dual-lumen catheter and intravascular ultrasound; 5) feasibility of retrograde crossing through grafts and septal and epicardial collateral vessels; 6) antegrade wiring strategies; 7) retrograde approach; 8) changing strategy when failing to achieve progress; 9) considering performing an investment procedure if crossing attempts fail; and 10) stopping when reaching high radiation or contrast dose or in case of long procedural time, occurrence of a serious complication, operator and patient fatigue, or lack of expertise or equipment. This algorithm can improve outcomes and expand discussion, research, and collaboration.

View details for DOI 10.1016/j.jacc.2021.05.055

View details for PubMedID 34412818