Abdominopelvic FLASH Irradiation Improves PD-1 Immune Checkpoint Inhibition in Preclinical Models of Ovarian Cancer. Molecular cancer therapeutics Eggold, J. T., Chow, S., Melemenidis, S., Wang, J., Natarajan, S., Loo, P. E., Manjappa, R., Viswanathan, V., Kidd, E. A., Engleman, E., Dorigo, O., Loo, B. W., Rankin, E. B. 2021

Abstract

Treatment of advanced ovarian cancer using PD-1/PD-L1 immune checkpoint blockade shows promise, however current clinical trials are limited by modest response rates. Radiation therapy has been shown to synergize with PD-1/PD-L1 blockade in some cancers but has not been utilized in advanced ovarian cancer due to toxicity associated with conventional abdominopelvic irradiation. While ultra-high dose rate (FLASH) irradiation has emerged as a strategy to reduce radiation-induced toxicity, the immunomodulatory properties of FLASH irradiation remain unknown. Here we demonstrate that single high dose abdominopelvic FLASH irradiation promoted intestinal regeneration and maintained tumor control in a preclinical mouse model of ovarian cancer. Reduced tumor burden in conventional and FLASH treated mice was associated with an early decrease in intratumoral regulatory T cells and a late increase in cytolytic CD8+ T cells. Compared to conventional irradiation, FLASH irradiation increased intratumoral T cell infiltration at early timepoints. Moreover, FLASH irradiation maintained the ability to increase intratumoral CD8+ T cell infiltration and enhance the efficacy of alphaPD-1 therapy in preclinical models of ovarian cancer. These data highlight the potential for FLASH irradiation to improve the therapeutic efficacy of checkpoint inhibition in the treatment of ovarian cancer.

View details for DOI 10.1158/1535-7163.MCT-21-0358

View details for PubMedID 34866044