A Comparison of Logistic Regression Against Machine Learning Algorithms for Gastric Cancer Risk Prediction Within Real-World Clinical Data Streams. JCO clinical cancer informatics Huang, R. J., Kwon, N. S., Tomizawa, Y., Choi, A. Y., Hernandez-Boussard, T., Hwang, J. H. 2022; 6: e2200039


Noncardia gastric cancer (NCGC) is a leading cause of global cancer mortality, and is often diagnosed at advanced stages. Development of NCGC risk models within electronic health records (EHR) may allow for improved cancer prevention. There has been much recent interest in use of machine learning (ML) for cancer prediction, but few studies comparing ML with classical statistical models for NCGC risk prediction.We trained models using logistic regression (LR) and four commonly used ML algorithms to predict NCGC from age-/sex-matched controls in two EHR systems: Stanford University and the University of Washington (UW). The LR model contained well-established NCGC risk factors (intestinal metaplasia histology, prior Helicobacter pylori infection, race, ethnicity, nativity status, smoking history, anemia), whereas ML models agnostically selected variables from the EHR. Models were developed and internally validated in the Stanford data, and externally validated in the UW data. Hyperparameter tuning of models was achieved using cross-validation. Model performance was compared by accuracy, sensitivity, and specificity.In internal validation, LR performed with comparable accuracy (0.732; 95% CI, 0.698 to 0.764), sensitivity (0.697; 95% CI, 0.647 to 0.744), and specificity (0.767; 95% CI, 0.720 to 0.809) to penalized lasso, support vector machine, K-nearest neighbor, and random forest models. In external validation, LR continued to demonstrate high accuracy, sensitivity, and specificity. Although K-nearest neighbor demonstrated higher accuracy and specificity, this was offset by significantly lower sensitivity. No ML model consistently outperformed LR across evaluation criteria.Drawing data from two independent EHRs, we find LR on the basis of established risk factors demonstrated comparable performance to optimized ML algorithms. This study demonstrates that classical models built on robust, hand-chosen predictor variables may not be inferior to data-driven models for NCGC risk prediction.

View details for DOI 10.1200/CCI.22.00039

View details for PubMedID 35763703