Accelerated Slice Encoding for Metal Artifact Correction JOURNAL OF MAGNETIC RESONANCE IMAGING Hargreaves, B. A., Chen, W., Lu, W., Alley, M. T., Gold, G. E., Brau, A. C., Pauly, J. M., Pauly, K. B. 2010; 31 (4): 987-996

Abstract

To demonstrate accelerated imaging with both artifact reduction and different contrast mechanisms near metallic implants.Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The signal-to-noise ratio (SNR) effects of all reconstructions were quantified in one subject. Ten subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods.The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects.SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging, and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes.

View details for DOI 10.1002/jmri.22112

View details for Web of Science ID 000276328200026

View details for PubMedID 20373445

View details for PubMedCentralID PMC2894155